152 research outputs found

    Respiratory-induced organ motion compensation for MRgHIFU

    Get PDF
    Summary: High Intensity Focused Ultrasound is an emerging non-invasive technology for the precise thermal ablation of pathological tissue deep within the body. The fitful, respiratoryinduced motion of abdominal organs, such as of the liver, renders targeting challenging. The work in hand describes methods for imaging, modelling and managing respiratoryinduced organ motion. The main objective is to enable 3D motion prediction of liver tumours for the treatment with Magnetic Resonance guided High Intensity Focused Ultrasound (MRgHIFU). To model and predict respiratory motion, the liver motion is initially observed in 3D space. Fast acquired 2D magnetic resonance images are retrospectively reconstructed to time-resolved volumes, thus called 4DMRI (3D + time). From these volumes, dense deformation fields describing the motion from time-step to time-step are extracted using an intensity-based non-rigid registration algorithm. 4DMRI sequences of 20 subjects, providing long-term recordings of the variability in liver motion under free breathing, serve as the basis for this study. Based on the obtained motion data, three main types of models were investigated and evaluated in clinically relevant scenarios. In particular, subject-specific motion models, inter-subject population-based motion models and the combination of both are compared in comprehensive studies. The analysis of the prediction experiments showed that statistical models based on Principal Component Analysis are well suited to describe the motion of a single subject as well as of a population of different and unobserved subjects. In order to enable target prediction, the respiratory state of the respective organ was tracked in near-real-time and a temporal prediction of its future position is estimated. The time span provided by the prediction is used to calculate the new target position and to readjust the treatment focus. In addition, novel methods for faster acquisition of subject-specific 3D data based on a manifold learner are presented and compared to the state-of-the art 4DMRI method. The developed methods provide motion compensation techniques for the non-invasive and radiation-free treatment of pathological tissue in moving abdominal organs for MRgHIFU. ---------- Zusammenfassung: High Intensity Focused Ultrasound ist eine aufkommende, nicht-invasive Technologie für die präzise thermische Zerstörung von pathologischem Gewebe im Körper. Die unregelmässige ateminduzierte Bewegung der Unterleibsorgane, wie z.B. im Fall der Leber, macht genaues Zielen anspruchsvoll. Die vorliegende Arbeit beschreibt Verfahren zur Bildgebung, Modellierung und zur Regelung ateminduzierter Organbewegung. Das Hauptziel besteht darin, 3D Zielvorhersagen für die Behandlung von Lebertumoren mittels Magnetic Resonance guided High Intensity Focused Ultrasound (MRgHIFU) zu ermöglichen. Um die Atembewegung modellieren und vorhersagen zu können, wird die Bewegung der Leber zuerst im dreidimensionalen Raum beobachtet. Schnell aufgenommene 2DMagnetresonanz- Bilder wurden dabei rückwirkend zu Volumen mit sowohl guter zeitlicher als auch räumlicher Auflösung, daher 4DMRI (3D + Zeit) genannt, rekonstruiert. Aus diesen Volumen werden Deformationsfelder, welche die Bewegung von Zeitschritt zu Zeitschritt beschreiben, mit einem intensitätsbasierten, nicht-starren Registrierungsalgorithmus extrahiert. 4DMRI-Sequenzen von 20 Probanden, welche Langzeitaufzeichungen von der Variabilität der Leberbewegung beinhalten, dienen als Grundlage für diese Studie. Basierend auf den gewonnenen Bewegungsdaten wurden drei Arten von Modellen in klinisch relevanten Szenarien untersucht und evaluiert. Personen-spezifische Bewegungsmodelle, populationsbasierende Bewegungsmodelle und die Kombination beider wurden in umfassenden Studien verglichen. Die Analyse der Vorhersage-Experimente zeigte, dass statistische Modelle basierend auf Hauptkomponentenanalyse gut geeignet sind, um die Bewegung einer einzelnen Person sowie einer Population von unterschiedlichen und unbeobachteten Personen zu beschreiben. Die Bewegungsvorhersage basiert auf der Abschätzung der Organposition, welche fast in Echtzeit verfolgt wird. Die durch die Vorhersage bereitgestellte Zeitspanne wird verwendet, um die neue Zielposition zu berechnen und den Behandlungsfokus auszurichten. Darüber hinaus werden neue Methoden zur schnelleren Erfassung patienten-spezifischer 3D-Daten und deren Rekonstruktion vorgestellt und mit der gängigen 4DMRI-Methode verglichen. Die entwickelten Methoden beschreiben Techniken zur nichtinvasiven und strahlungsfreien Behandlung von krankhaftem Gewebe in bewegten Unterleibsorganen mittels MRgHIFU

    Dynamic OCT Signal Loss for Determining RPE Radiant Exposure Damage Thresholds in Microsecond Laser Microsurgery

    Get PDF
    Optical microsurgery of the retinal pigment epithelium (RPE) requires reliable real-time dosimetry to prevent unwanted overexposure of the neuroretina. The system used in this experiment implements optical coherence tomography (OCT) to detect the intentional elimination of RPE cells. We evaluated the performance of OCT dosimetry in terms of its ability to detect RPE cell damage caused by microsecond laser pulses of varying duration. Therefore, ex-vivo porcine RPE choroid sclera explants were embedded in an artificial eye and exposed to single laser pulses of 2–20 µs duration (wavelength: 532 nm, exposure area: 120 × 120 µm2, intensity modulation factor: 1.3). Simultaneously, time-resolved OCT M-scans were recorded (central wavelength: 870 nm, scan rate: 33 kHz). Post-irradiation, RPE cell damage was quantified using a calcein-AM viability assay and compared with an OCT-dosimetry algorithm. The results of our experiments show that the OCT-based analysis successfully predicts RPE cell damage. At its optimal operating point, the algorithm achieved a sensitivity of 89% and specificity of 94% for pulses of 6 µs duration and demonstrated the ability to precisely control radiant exposure of a wide range of pulse durations towards selective real-time laser microsurgery

    Optical coherence tomography controlled selective retina therapy with a novel microsecond laser

    Get PDF
    Selective retina therapy (SRT) is a short pulse (μs-regime) alternative to conventional laser photocoagulation (LPC) for treatment of retinal diseases. LPC leads to collateral damage of retinal layers adjacent to the retinal pigment epithelium (RPE), including healthy, non-regenerative photoreceptors due to the high thermal load, whereas in SRT, RPE cells are destroyed by microbubbles without damaging the neuronal retina. A novel experimental SRT laser operating at 532 nm wavelength can deliver 2 – 20 μs pulse sequences. Its tight integration into an upgraded diagnostic SPECTRALIS system combines beam control for treatment planning with real-time optical coherence tomography (OCT) overexposure protection of the photoreceptors. This “Spectralis Centaurus” system, was built and preliminary tested on porcine ex-vivo samples, reaching an unprecedented accuracy with unique planning and follow-up capabilities for upcoming clinical cellular level micro-surgery. The combination of OCT with SRT selectively limits cell death to the RPE by precisely controlling energy deposition while optically monitoring tissue response

    Bridging intravenous thrombolysis in patients with atrial fibrillation.

    Get PDF
    Background and purpose 40% of acute ischemic stroke patients treated by mechanical thrombectomy (MT) have a clinical history of atrial fibrillation (AF). The safety of bridging intravenous thrombolysis (IVT) (MT + IVT) is currently being discussed. We aimed to analyze the interaction between oral anticoagulation (OAC) status or AF with bridging IVT, regarding the occurrence of symptomatic intracranial hemorrhage (sICH) and functional outcome. Materials and Methods Multicentric observational cohort study (BEYOND-SWIFT registry) of consecutive patients undergoing MT between 2010 and 2018 (n = 2,941). Multinomial regression models were adjusted for prespecified baseline and plausible pathophysiological covariates identified on a univariate analysis to assess the association of AF and OAC status with sICH and good outcomes (90-day modified Rankin Scale score 0-2). Results In the total cohort (median age 74, 50.6% women), 1,347 (45.8%) patients had AF. Higher admission National Institutes of Health Stroke Scale (NIHSS) score (aOR 1.04 [95% 1.02-1.06], per point of increase) and prior medication with Vitamin K antagonists (VKA) (aOR 2.19 [95% 1.27-3.66]) were associated with sICH. Neither AF itself (aOR 0.71 [95% 0.41-1.24]) nor bridging IVT (aOR 1.08 [0.67-1.75]) were significantly associated with increased sICH. Receiving bridging IVT (aOR 1.61 [95% 1.24-2.11]) was associated with good 90-day outcome, with no interaction between AF and IVT (p = 0.92). Conclusion Bridging IVT appears to be a reasonable clinical option in selected patients with AF. Given the increased sICH risk in patients with VKA, subgroup analysis of the randomized controlled trials should analyze whether patients with VKA might benefit from withholding bridging IVT. Registration clinicaltrials.gov; Unique identifier: NCT03496064

    Mechanical thrombectomy in acute ischemic stroke : Consensus statement by ESO-Karolinska Stroke Update 2014/2015, supported by ESO, ESMINT, ESNR and EAN

    Get PDF
    The original version of this consensus statement on mechanical thrombectomy was approved at the European Stroke Organisation (ESO)-Karolinska Stroke Update conference in Stockholm, 16-18 November 2014. The statement has later, during 2015, been updated with new clinical trials data in accordance with a decision made at the conference. Revisions have been made at a face-to-face meeting during the ESO Winter School in Berne in February, through email exchanges and the final version has then been approved by each society. The recommendations are identical to the original version with evidence level upgraded by 20 February 2015 and confirmed by 15 May 2015. The purpose of the ESO-Karolinska Stroke Update meetings is to provide updates on recent stroke therapy research and to discuss how the results may be implemented into clinical routine. Selected topics are discussed at consensus sessions, for which a consensus statement is prepared and discussed by the participants at the meeting. The statements are advisory to the ESO guidelines committee. This consensus statement includes recommendations on mechanical thrombectomy after acute stroke. The statement is supported by ESO, European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), and European Academy of Neurology (EAN).Peer reviewe

    Hypocoercivity for Kolmogorov backward evolution equations and applications

    Full text link
    In this article we extend the modern, powerful and simple abstract Hilbert space strategy for proving hypocoercivity that has been developed originally by Dolbeault, Mouhot and Schmeiser. As well-known, hypocoercivity methods imply an exponential decay to equilibrium with explicit computable rate of convergence. Our extension is now made for studying the long-time behavior of some strongly continuous semigroup generated by a (degenerate) Kolmogorov backward operator L. Additionally, we introduce several domain issues into the framework. Necessary conditions for proving hypocoercivity need then only to be verified on some fixed operator core of L. Furthermore, the setting is also suitable for covering existence and construction problems as required in many applications. The methods are applicable to various, different, Kolmogorov backward evolution problems. As a main part, we apply the extended framework to the (degenerate) spherical velocity Langevin equation. The latter can be seen as some kind of an analogue to the classical Langevin equation in case spherical velocities are required. This model is of important industrial relevance and describes the fiber lay-down in the production process of nonwovens. For the construction of the strongly continuous contraction semigroup we make use of modern hypoellipticity tools and pertubation theory

    Risk factors, aetiology and outcome of ischaemic stroke in young adults: the Swiss Young Stroke Study (SYSS).

    Get PDF
    Ischaemic stroke (IS) in young adults has been increasingly recognized as a serious health condition. Stroke aetiology is different in young adults than in the older population. This study aimed to investigate aetiology and risk factors, and to search for predictors of outcome and recurrence in young IS patients. We conducted a prospective multicentre study of consecutive IS patients aged 16-55 years. Baseline demographic data, risk factors, stroke aetiology including systematic genetic screening for Fabry disease and severity were assessed and related to functional neurological outcome (modified Rankin Scale, mRS), case fatality, employment status, place of residence, and recurrent cerebrovascular events at 3 months. In 624 IS patients (60 % men), median age was 46 (IQR 39-51) years and median NIHSS on admission 3 (IQR 1-8). Modifiable vascular risk factors were found in 73 %. Stroke aetiology was mostly cardioembolism (32 %) and of other defined origin (24 %), including cervicocerebral artery dissection (17 %). Fabry disease was diagnosed in 2 patients (0.3 %). Aetiology remained unknown in 20 %. Outcome at 3 months was favourable (mRS 0-1) in 61 % and fatal in 2.9 %. Stroke severity (p < 0.001) and diabetes mellitus (p = 0.023) predicted unfavourable outcome. Stroke recurrence rate at 3 months was 2.7 %. Previous stroke or TIA predicted recurrent cerebrovascular events (p = 0.012). In conclusion, most young adults with IS had modifiable vascular risk factors, emphasizing the importance of prevention strategies. Outcome was unfavourable in more than a third of patients and was associated with initial stroke severity and diabetes mellitus. Previous cerebrovascular events predicted recurrent ones
    corecore